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We propose to measure the Virtual Compton Scattering (VCS) reaction: ep — epry
at and above 7-production threshold at Q% = 0.65, 1.35, 3.0, and 4.0 GeV?. We will
use the Dispersion Relation formalism of B. Pasquini et al.to extract the Generalized
electric and magnetic polarizabilities o(Q?) and B(Q?). We will identify the VCS
process by coincidence detection of the scattered electron and recoil proton in the
Hall A HRS pair. We request a total of 8 days of beam. Our request includes
94 hours of polarized beam to measure the beam helicity asymmetry above pion
threshold. This provides a test of the Dispersion Relation formalism, independent

of the values of the polarizabilities.
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I. INTRODUCTION

The internal charges and currents of a composite system polarize in response to external
electromagnetic fields. In a weak external field, the linear response is quantified by the polar-
izability. In a quantum system, the polarizability is a dispersion integral over the excitation
spectrum. Thus the polarizability is a simple observable which summarizes information
about the full structure of the target at all energies.

The Q? dependence of the polarizabilities (see below) measures the spatial distribution of
the response of the proton to an external electro-magnetic field. Naively, the spin degree of
freedom of quarks will give rise to a paramagnetic response, whereas the motion of charges
(quarks or pions) will generate a diamagnetic response. The polarizabilities of the proton
have been calculated in Chiral Perturbation Theory for Q? < m?2 [15]. These calculations
show strong contributions from both pion and quark degrees of freedom (the latter are
parameterized by resonance terms).

In a non-relativistic system, the electric polarizability scales as aggp times the volume of
the system times the ratio of the linear size of the system divided by the compton wavelength
of the constituents. Thus the small value of the proton polarizability relative to the proton
charge radius is direct evidence for the relativistic character of the structure of the proton.

The high Q? behavior of the polarizabilities will complement the new high precision
measurements of Gg and G in quantifying the nature of charge and magnetism inside the
proton. The dispersion relation calculations discussed below provide insight into the range
of excitations and the intermediate channels responsible for both the electric and magnetic

polarizabilities, as a function of Q2.

A. Polarizabilities and Real Compton Scattering

The compton scattering amplitude on the proton (yp — 7yp) is an integral over all possible
(real or virtual) intermediate states. To O(w?), the low energy spin independent amplitude
is defined by just the proton mass, charge, magnetic moment, and the electric and magnetic
polarizabilities ap and Sy, where w is the photon energy in the lab frame [1]. To O(w?),
the [nucleon| spin-dependent amplitude is defined by the same static constants, and four

spin dependent polarizabilities vg1, Va1, YE2, and varo [1]. The polarizabilities ag and Sy,



enter the unpolarized real compton scattering cross section to order w?, from the interference

between the polarizability term and the w-independent (Thomson scattering) term.

B. Polarizabilities and Virtual Compton Scattering
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FIG. 1: Lowest order in aggpp feynman diagrams for the reaction ep — epy. a) Kinematic
definitions; b) & c¢) Bethe-Heitler process, pre- & post-radiation, respectively. This is the radiative
tail of elastic electron scattering, including in particular the wide angle emission of the photon; d)
Virtual Compton Scattering (VCS) amplitude. Some convenient invariants include Q? = —¢? =

—(k=FE)?>05=(g+p)*t=(¢g-¢) u=(p—¢)* and v = (s —u)/(4M,).

The virtual compton scattering (VCS) process ep — epy is the superposition of the
Bethe-Heitler (BH) and Compton processes illustrated in Fig. 1. The figure also defines
our kinematic conventions. It is convenient to make the [gauge invariant| separation of the
compton process into the nucleon Born (B) terms and non-Born (NB) terms, as illustrated
in Fig. 2. The non-Born terms contain all of the dependence of the VCS amplitude on the
continuum spectrum of the nucleon.

P. Guichon, G. Liu, and A. Thomas [3] derived a low energy theorem for the VCS am-
plitude as a function of ¢/, the final photon energy in the yp Center-of-Mass (CM) system.
The Bethe-Heitler and Born terms of the VCS amplitude have the expansion:

a_
TS = q—,1+ao+a1 ¢ +0(¢"”) (1)

The Non-Born amplitude is a regular function of ql’, Consequently, the low energy expansion

of the Non-Born amplitude starts with a term linear in ¢':

TN = bigd +0(q"?) (2)
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FIG. 2: Separation of the virtual compton amplitude: VCS) into s- and u- channel Born terms
and non-Born: NB) terms. The s- and u-channel Born terms depend only on the on shell Dirac
and Pauli form factors Fi, and Fp,. The non-Born terms include the sum over all possible s- and

u-channel resonances, or equivalently the sum over all ¢-channel resonances.

The leading Non-Born term b, is determined by all possible couplings of the initial state vir-
tual photon with a final state electric- or magnetic-dipole photon. These are the generalized
polarizabilities (GP) of the proton.

A. Metz and D. Drechsel [4] showed in the context of the Linear o-model that there are
just six independent polarizabilities. This was later shown to be a general result [5]. These
six independent generalized polarizabilities PA'YALS | as defined by P. Guichon and M.
Vanderhaeghen[6], are labeled by the multipolarities of the incident (AL) and final (A’L’)
photons, and the spin transfer S to the proton, with A = C, F, M and S = 0,1. A
Siegert relation is used to transform electric to coulomb multipoles. The resulting generalized

polarizabilities and their ? — 0 limits are:
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In terms of these polarizabilities, the unpolarized VCS cross section has the low energy



expansion:
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The kinematic factors vy;, and vy are defined in [6]. The “tilde” variables are defined in
the gly, — 0 limit: ¢° = M, — E, = M, — VM2 + q? (CM frame), Q? = —2M,,§°

Three of the spin polarizabilities enter into Eq. 4. The interference of the compton am-
plitude with the spin-dependent Bethe-Heitler and Born processes produces this sensitivity

to the spin polarizabilities in the unpolarized VCS cross section.

C. Dispersion Relations

Recently, B. Pasquini et al.[11] developed a dispersion relation formalism that makes it
possible to constrain the higher order terms (up to at least two pion threshold) in Eq. 4
from dispersion integrals over pion electro-production data. This extends the earlier work
on Dispersion Relations for Real Compton Scattering.

The [non-Born] VCS amplitude can be expanded as:

12
= ZE(V, QQ,t)péw' (8)
=1

The pt are 12 independent tensors in photon-polarization and nucleon spin-space. For
example, pi"” = ¢'*¢” — q-¢'¢g". The amplitudes Fj are functions of the three invariants @2,

t, and

— 0 ! 2
v = S u — [q + q ]lab o Q (9)
4M, 2 4M,

P

The p!"” are defined such that the F; are symmetric under photon crossing:

E(Qza_l/at) = E(Qz’y’t), (10)



The polarizabilities (Eq. 3) are linear combinations of F?B(QQ) = F(Q%v =0,t=—-Q?%.
The linear ¢’ dependence of the VCS amplitude 7% [in the low energy limit] is contained
in the tensors pi”.
Assuming analyticity and an appropriate high energy behavior, the real and imaginary
parts of each amplitude F; will satisfy a Cauchy relation:
1
REVP Q0] = [T 5 S [R@0) (11)
By unitarity, S [F;] can be determined by a multipole decomposition of real and virtual
photon absorption.
B. Pasquini et al.,[11] use a Regge theory analysis to show that the dispersion integrals of
Eq. 11 converge for all F; except F; and F5. Furthermore, for F3 6 12, they assert that the
dispersion integrals are saturated by the v*p — N7 amplitudes. For F}, 5, the dispersion

integrals are evaluated up to vma ~ 1.5 GeV, and the asymptotic contribution is obtained

formally by closing the contour in a semicircle of radius vy, in the complex-v plane:

R[FNP(@, 1) = R[FNQ@, 00| + FEQ%, v, 1) (12)
RV @] = [ S [ Q) 13

For F5, the [asymptotic] contribution from the complex contour at v,y is approximated by

a v-independent ¢-channel 7° exchange:

grNN Fwofy'y (Q2)
M t—m2

This gives good agreement with the most recent experimental determination of the (Q* = 0)

F(Q% 1) = (14)

backward Spin polarlzablhty Yr = —YE1 + Ymi + YE2 — YMm2 [2, ]_2]
The amplitude F; is approximated by the dispersion integral over the 7N production

amplitudes, plus a v-independent t-channel exchange of an effective o-meson:

2 2
RQ@ i) = FN@ 0+ [Fu@) - 7T (@)] o2 (15)

N ABu(Q*) | 2B, 1+4Q*/m2
= @+ QQED Ep—i-M 1—t/m2 (16)

ABu(@QY) = [Bu(@?) — BT (QY)] (17)

TN(Q?) is the contribution to the magnetic polarizability obtained from the dispersion
integral over the 7N multipoles. The difference ABy(Q?) is a phenomenological function

that must be fit to the RCS and VCS data as a function of Q2.



Although the dispersion integral for F, converges in principle, in practice B. Pasquini et
al., find incomplete convergence from the 7N multipoles. In particular, the Q2 — 0 limit of

this dispersion integral over 7N multipoles contributes 85% of the Baldin sum rule [13, 14]:

1 dv'
4M§O,/QEDF2(0,O, 0) = ag + BM = 2—7_‘_2 /O'fY(VI)ﬁ (18)
= 13.69+£0.14-107* fm?® (19)
AM2aqgppF37Y(0,0,0) = 11.6- 10 *fm® (20)

B. Pasquini et al., approximate the contributions to F3 beyond the 7 N multipoles with a v-

and t-independent function of 2

Aap(Q®) + ABu(Q?) | 2E, do
4M2aqED E, + M 2Mqg,,’

B (@ vt) = FNQ v ) + (21)

where Aag(Q?) = ap(@?) — o=V (Q?) is defined in the same way as AfSy.

With the theoretical formalism and phenomenological ansitze outlined above, the dis-
persion relations are able to predict the full VCS amplitude through the A-resonance, in
terms of just two phenomenological functions of Q?: Aag and AfSy. In particular, the
dispersion relations are able to predict all of the spin polarizabilities, including their contri-
butions to the observables of Eq. 3. The spin polarizability predictions are independent of

the phenomenological terms Aag(Q?) and ABy(Q?).

D. Previous Results

The existing data on the electric and magnetic polarizabilities are shown in Fig. 3. The
scalar polarizabilities a(Q?) and 8(Q?) are extracted from the experimental observables by
subtracting the vector polarizabilities calculated by the Dispersion Relations of B. Pasquini
et al.[11]. The JLab E93-050 point at Q* = 1 GeV? was extracted both from two analysis:
Low Energy Theorem, and Dispersion Relations. The Low Energy Theorem analysis used
data spanning the full angular distribution below pion threshold. The Dispersion Relation
analysis used data up to two pion threshold obtained with the proton spectrometer centered
on 0,, = 180°. The dispersion relation calculations in Fig. 3 are shown for a simple dipole

approximation of the asymptotic contributions to the electric and magnetic polarizabilities:

AO,/E(QQ) . AO!E(O)

= s Qyar (22)
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FIG. 3: Polarizability structure functions of the proton. Py /Gg is proportional to ag(Q?).
Pr7 /Gy is proportional to —Ba(Q?) plus spin polarizabilities. The real photon point is from
Olmos de Leon, averaged with earlier RCS results. The Mainz Q? = 0.33 GeV? point is from J.
Roche et al.[7]. The points at @% = 1.0 and 1.7 GeV? are from Jefferson Lab E93-050. The E93-050
results are preliminary, the complete systematic errors are still under evaluation. The Bates VCS
experiment [8] results will be at Q% = 0.05 GeV2. The solid blue curves are the contributions of
the 7N dispersion relations, including the spin polarizabilities for Pr7. The dashed curves are the
contributions of the terms Aa and AS of Eq. 22 & 23, with the parameters listed on the figure.
The solid black lines are the complete DR calculations. These curves are fit to the Q% = 0 GeV?
and Q% = 1 GeV? points. For Ppy, the solid red curve is proportional to G(Q?), normalized to
the Q? = 0 point. For Prr, the red and black curves are identical, except for different values of

Ag. The zoom in the lower right corner of Ppr illustrates variation in Prr for Ag = 0.85, 0.775,

0.735, and 0.57 GeV (top to bottom).
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ABu(0)
1+ @ /Ag]2

The value A, = 0.88 GeV is fit to the Q? = 1 GeV? point. The 7N contribution o™ (Q?
E

ABu(Q%) = (23)

changes sign at very low %, and is everywhere much smaller than the experimental values
for ag(Q?). Thus the high energy virtual excitations of the proton dominate the electric
polarizability.

The electric polarizability closely follows the Electric form factor of the proton, Gg,(Q?),
as recently measured at Jefferson Lab [9, 10]. This implies that the electric polarization
response is directly proportional to the charge density, at all distance scales.

The magnetic polarizability, when compared to the dispersion relation calculation illus-
trates a very strong cancellation of para- and dia-magnetism at all Q2. The dispersion
relation contribution A7 is strongly paramagnetic, whereas the asymptotic contribution
ABar, whether fit to Q2 = 1 or Q% = 1.7 GeV? is strongly diamagnetic.This destructive in-
terference is also predicted at low @? by Chiral Perturbation Theory [15]. In the Dispersion
Relations, a large negative value for AB(Q?) is a natural result, since this term results from
a t-channel o-meson exchange, which is parameterizes the (diamagnetic) contribution of the

pion cloud.

II. EXPERIMENTAL PROPOSAL

We propose to use the 15 cm liquid Hy target and the HRS pair in Hall A together
with beam energies from 3.5 to 5.8 GeV to measure the H(€, e'p)y cross section and beam
helicity asymmetry at Q% = 0.65, 1.35, 3.0, and 4.0 GeV?. At each Q? we will make
measurements centered at threshold (W = 1.073 GeV) and at the P33(1232) resonance,
which also corresponds very nearly to the two pion threshold. The angular settings at each
Q?, W pair are discussed below. At Q? = 3 and 4 GeV?, the experiment takes advantage of
the large Lorentz boost of the proton to cover a large acceptance (including out of plane) in
a single setting of the HRS pair. We will take high statistics data in small bins in W and

cMm
05,



11

"H(e,e p)X Missing Mass Squared (MeVz) Run '1676
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FIG. 4: Missing mass resolution for the H(e, ¢'p) X reaction, obtained in JLab E93-050 at Q? = 1
GeV?. The H(e, e'p)y and H(e, e'p)m¥ processes are clearly separated, and the simulation accurately

describes the line-shape.

A. Separation of H(e,e'p)y and H(e, e'p)m” Reactions

Fig. 4 displays sample missing mass spectra for the H(e, e'p) X reaction from JLab VCS
experiment E93-050. Fig. 5 displays simulations for the present proposal at Q% = 4 GeV?2.
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Missing Mass W=1.2 GeV and Q2=4 GeV*
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FIG. 5: Projected missing mass resolution for the H(e,e'p)X reaction, at Q> = 4 GeV? and
W = 1.2 GeV. H%M is the angle between the ¢ and missing particle directions, in the electron
scattering plane. The incident beam and scattered electron directions lie at positive H%M . The
strong kinematic dependence of the line-shape reflects the boost. The simulation includes all of the
resolution effects from E93-050. Due to the increase in beam energy from 4 to 5.8 GeV, the final
electron and proton momenta, here are similar to the values in E93050. The VCS/7° separation is
uniformly better at W = 1.1 GeV, since the VCS cross section is larger and the 7° cross section is

smaller. At Q? = 3 GeV?, the M)Q( spectra are qualitatively the same as at Q* = 4 GeVZ2.
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At Q% = 3 GeV? and 4 GeV?, the H(e, e'p)y and H(e, e'p)w’ processes are well separated
by the HRS? resolution in the backward direction and in the vicinity of the Bethe-Heitler
peaks. Separation for —90° < G%M < 40° would require detection of the final photon in triple
coincidence. Experiment E93-050 demonstrates that the VCS channel can be separated at

Q? = 0.65, and 1.35 GeV?2.

B. Sensitivity to Generalized Polarizabilities

In Figs. 6 and 7 we show the dependence of the differential cross section on the general-
ized polarizabilities. In order to illustrate the angular distributions relative to the electron
scattering plane we define the CM longitude and latitude angles @%M and ®,,, respectively.
The electron scattering plane defines ®,, = 0 and the direction q = k - k’ defines the prime
meridian ©FY = 0. The sign convention for O is chosen such that the Bethe-Heitler
peaks (in the direction of the incident and scattered electrons) lie at positive values of @%VI .
Note that for ®,, = 0, the polar angle 9$7M and the longitude @S,i” coincide.

Figs. 8 and 9 zoom on the angular range —180° < ©.,., < —90°, for @* = 4.0, and 3.0
GeV?, respectively, at W = 1.2 GeV.

The angular distributions provide our sensitivity to the polarizabilities. Our proposed
measurements in 20 MeV bins in W from 0.95 to 1.25 GeV will provide a test of the
Dispersion Relation formalism. In particular, the W-dependence is a test of whether the

DR adequately describe the contributions of virtual channels beyond 7/V.

C. Single Spin Asymmetry

The single spin asymmetry H(€, ¢'p)~y is dominated by the imaginary part of the BH-VCS
interference. Since the BH is purely real, this observable therefore gives us direct access to
the imaginary part of the VCS amplitude. As discussed above, the optical theorem links
J[VCS] with the on-shell [real and virtual] photo-absorption amplitudes. Therefore this
observable is largely insensitive to the polarizabilities. However, we wish to measure the
single spin asymmetry (above pion threshold), precisely because it offers us a calibration of

the 7N multipoles input to the dispersion relation calculations.
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FIG. 6: Differential H(e, e'p)y cross sections d50/dk?bdQLabdQ%VI (mb/GeV/st?) at W = 1.1
GeV, for four values of Q2. In each plot, the curves are: Bethe-Heitler+Born (black); Dispersion
Relations (DR) with (A, Ag) = (1.0,1.0) GeV (magenta); DR with A, = 1.0 GeV and AB(Q?) =0
(blue); DR with ; and Dispersion Relations with Ao = 0A5 =0

(red). The positive values of 6+, correspond to ¢, = 0, whereas 6.+, < 0 refers to ¢,~, = 180.
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FIG. 7: Differential H(e, 'p)y cross sections at W = 1.2 GeV, for four values of @2, as a function

of @M (see text). The curves are defined in the same way as in Fig. 6.

D. Count Rates

Fig. 8 illustrates the coincidence acceptance for VCS at Q? = 4.0 GeV%, W = 1.2 and
the proton arm centered at ©5M = —140. Fig. 9 is the same figure, for Q* = 3 GeV?. The

simulations illustrate the large out-of-plane acceptance: roughly one third of the statistics
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ke = 5.8 GeV, Q2 =4GCeV’, W=1.2GeV, Time =48 hr
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FIG. 8: Differential H(e, €'p)~y cross sections as a function of @g%’ . The other kinematic parameters
are k. = 5.8 GeV, Q? = 4.0 GeV?2, and W = 1.2 GeV. The curves are (from top to bottom) the
Dispersion Relation predictions with the parameters (A, Ag) = (1.0, 0.7), (1.0, 0.5), ,
(0.8, 0.5), in GeV. The black curve is the Bethe-Heitler + Born prediction. The error-bars superim-
posed on the (Ay, Ag) = (1.0, 0.5) curve represent the statistical precision after 48 hours of 80 pA
on the 15 cm LHy target (50,000 fb~!), with the proton spectrometer centered on @%VI = —140°.
The statistical errors are shown in three bands in latitude: (0,19.4°); (19.4°,41.3°); (41.3,90°).
These bands are chosen to equally subdivide the solid angle for each value of the the longitude

variable @,?*A,;[ . For clarity, the projected data in the out-of-plane bands are renormalized by 1/5

and 1/10. No theory curves are shown for the out of plane bins.
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FIG. 9: Differential H(e, €'p)~y cross sections as a function of @g%’ . The other kinematic parameters
are k. = 5.8 GeV, Q? = 3.0 GeV?2, and W = 1.2 GeV. The statistics are obtained with 24 hours of
80 nA beam. The curves and simulated experimental results are obtained in the same way as for

Fig. 8

lie at [®,,| > 20°. The simulations were done with just the Bethe-Heitler plus Born cross
section. To obtain realistic count rate estimates, we scale the simulated cross section by
the ratio of the DR and BH+B cross sections at the center of the acceptance (Figs. 6 & 7)
The plots show a strong statistical sensitivity to the polarizabilities in the range —140 <

@frjj‘f < —90°. The variation of each of the polarizability parameters by +0.2 is chosen to
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correspond to approximately the 20 relative precision of the measurements in E93-050.
We will subdivide each acceptance into 9° degree bins in longitude, 3 bins of equal ac-
ceptance in latitude, and 20 MeV bins in W. We seek 7% statistics in the central bins of

each setting. The precision of the W-dependence is illustrated in Fig. 10.

E. Calibrations

At Q? = 3 GeV? and 4 GeV?, we will take coincidence p(e, e'p)y data at the Bethe-
Heitler peaks, in order calibrate the absolute alignment of the spectrometer pair, and to
normalize our results to the elastic form factors. We note that the angular changes in 0,
at fixed Q%, W for both production and calibration data does not require any changes to
the electron arm, only the proton arm angle and momentum must be varied. We will use
the ARC and/or EP apparatus to determine the beam energy. In E93-050, we found that
our H(e,e'p)X missing mass resolution is very sensitive to knowledge of the absolute beam

energy.

F. Beam Time Request

Our request is
e 10 hours at Q? = 0.66 GeV2.

14 hours at Q? = 1.35 GeV?.

108 hours at Q% = 4 GeV?,

60 hours at Q% = 3 GeV?2.

Total request: 192 hours
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FIG. 10: Top figures: Combined anticipated statistics in 20 MeV bins in W (BH+Born cross

section only) from settings W=1.1 GeV and W = 1.2 GeV, at Q? = 4.0 GeV? (W = 1.0 is

not included in these statistics). The two plots are from bins —146 < @,%VI < —135° (left)

and —126 < ©YM < —117°. The lattitude variable ®., is divided into three bins: (0,19.4°),

(19.4°,41.3°), and (41.3°,90°). At G)%VI ~ —120° only the first two bins in ®,,, are populated by

the acceptance. Bottom figures: Bethe-Heitler + Born (black) and Dispersion Relation curves at

CM
6’7’7

plane (®,, = 0).

= —140° (left) and —120° (right). The theory curves are drawn in the electron scattering



